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Abstract

Learning self-supervised representations using reconstruction or contrastive losses
improves performance and sample complexity of image-based and multimodal rein-
forcement learning (RL). Here, different self-supervised loss functions have distinct
advantages and limitations depending on the information density of the underlying
sensor modality. Reconstruction provides strong learning signals but is susceptible
to distractions and spurious information. While contrastive approaches can ignore
those, they may fail to capture all relevant details and can lead to representa-
tion collapse. For multimodal RL, this suggests that different modalities should be
treated differently based on the amount of distractions in the signal. We propose
Contrastive Reconstructive Aggregated representation Learning (CoRAL), a unified
framework enabling us to choose the most appropriate self-supervised loss for each
sensor modality and allowing the representation to better focus on relevant aspects.
We evaluate CoRAL’s benefits on a wide range of tasks with images containing
distractions or occlusions, a new locomotion suite, and a challenging manipulation
suite with visually realistic distractions. Our results show that learning a multi-
modal representation by combining contrastive and reconstruction-based losses can
significantly improve performance and solve tasks that are out of reach for more
naive representation learning approaches and other recent baselines.

1 Introduction

Most representation learning approaches for reinforcement learning (RL) (Hafner et al., 2020; 2021;
2023; Laskin et al., 2020; Lee et al., 2020; Yarats et al., 2021b; Zhang et al., 2020; Zhu et al., 2023;
Deng et al., 2022) focus on images. Here, the challenge lies in compressing relevant information
while not getting distracted by potentially irrelevant aspects. Yet, most agents in realistic scenarios
can directly observe their internal states using sensors in the actuators, inertial measurement units,
and force and torque sensors. Including this low-dimensional and concise proprioceptive sensing
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Figure 1: Contrastive Reconstructive Aggregated representation Learning (CoRAL) learns multi-
modal state space representations of all available sensors using a combination of reconstruction-based
and contrastive objectives. Building on the insight that we can exchange likelihood-based recon-
struction with contrastive approaches using mutual information, allows us to choose an appropriate
loss function for each modality. Motivated by both a variational and predictive coding viewpoint,
CoRAL helps model-free and model-based agents to excel in challenging tasks that require informa-
tion fusion from sensors with different properties such as images and proprioception.

in representation learning can improve representation quality and downstream RL performance.
For such multimodal representations, State Space Models (Murphy, 2012) are a natural choice as
they lend themselves to accumulating information across multiple sensors and time. Previous works
suggest using either reconstruction (Hafner et al., 2019; 2021) or contrastive methods (Hafner et al.,
2020; Ma et al., 2020; Nguyen et al., 2021; Srivastava et al., 2021), both with their individual strengths
and weaknesses. While reconstruction provides an informative learning signal, it may fail to learn
good representations if observations are noisy or contain distracting elements (Zhang et al., 2020;
Ma et al., 2020; Deng et al., 2022). In such cases, contrastive methods can ignore irrelevant parts of
the observation and still learn valuable representations. However, they are prone to representation
collapse and often struggle to learn accurate dynamics (Ma et al., 2020). We argue that the different
properties of sensors, such as images and proprioception, suggest using different self-supervised loss
functions for each modality.

We propose Contrastive Reconstructive Aggregated representation Learning (CoRAL) to combine
contrastive and reconstruction-based approaches. CoRAL builds on state space representations and
allows us to select the best-suited loss function for each modality, for example, reconstruction-
based loss functions for concise, low-dimensional proprioception and contrastive losses for images
with distractions. Learning such state space representations can be theoretically motivated using a
variational inference (Hafner et al., 2019; Ma et al., 2020) or a predictive coding (Oord et al., 2018;
Nguyen et al., 2021; Srivastava et al., 2021) viewpoint, which results in two instances of CoRAL. For
both paradigms, CoRAL relies on the insight that we can replace likelihood-based reconstruction
terms with contrastive losses based on mutual information, which allows for a principled combination
of the two (Hafner et al., 2020; Ma et al., 2020). Fig. 1 provides an overview of the approach.

We integrate CoRAL into model-free and model-based RL to systematically assess the effects of
learning multimodal representations by selecting appropriate losses. We evaluate on DeepMind
Control (DMC) Suite (Tassa et al., 2018) tasks which we make more difficult by adding Video
Backgrounds (Zhang et al., 2020; Nguyen et al., 2021) and Occlusions. Furthermore, we use a
new Locomotion suite where agents must fuse proprioception and egocentric vision to move while
navigating obstacles. Finally, we consider a novel challenging Manipulation suite consisting of static
and mobile manipulation tasks with varying object geometries, built on ManiSkill2 (Gu et al.,
2023). Here, the agents must combine proprioception and different visual modalities, such as color
and depth, to move, navigate, and interact with varying objects in visually realistic environments.
These experiments show that learning multimodal representations using the best-suited loss for each
modality improves over other methods combining both modalities, such as representation learning
with a single loss and concatenating image representations with proprioception. CoRAL tends to
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work better than recent baselines on the Video Background and Occlusion tasks and allows significant
performance gains in the challenging Locomotion and Manipulation tasks. Furthermore, CoRAL
significantly improves model-based approaches with contrastive image representations, which are
known to perform worse than reconstruction-based approaches (Hafner et al., 2020; Ma et al., 2020).
Finally, we show the strengths of both instances of CoRAL. Variational CoRAL excels in tasks
where the main challenge is filtering out irrelevant distractions from images, while Predictive CoRAL
performs better in tasks that require propagating information over many timesteps.

To summarize our contributions: (i) We propose CoRAL, a general framework for multimodal rep-
resentation learning for RL which allows using the best-suited self-supervised loss for each modality
using the interchangeability of likelihood-based reconstruction and contrastive losses based on mutual
information. (ii)We instantiate two versions of CoRAL using state space representations, namely
Variational-CoRAL and Predictive-CoRAL, which are inspired by variational and contrastive pre-
dictive coding viewpoints, respectively. (iii) We systematically show their effectiveness on a diverse
set of 26 tasks, across the Video Backgrounds, Occlusions Locomotion, and Manipulation suites.

2 Related Work

Representations for Reinforcement Learning. Many recent approaches use ideas from genera-
tive (Wahlström et al., 2015; Watter et al., 2015; Banijamali et al., 2018; Lee et al., 2020; Yarats et al.,
2021b) and self-supervised representation learning (Zhang et al., 2020; Laskin et al., 2020; Yarats
et al., 2021a; Stooke et al., 2021; You et al., 2022) to improve performance, sample efficiency, and
generalization of RL from images. Those based on Recurrent State Space Models (RSSMs) (Hafner
et al., 2019) are particularly relevant for this work. When proposing the RSSM, Hafner et al. (2019)
used a generative approach. They formulated their objective as auto-encoding variational infer-
ence (Kingma & Welling, 2013), which trains the representation by reconstructing observations.
Such reconstruction-based approaches have limitations with observations containing noise or many
task-irrelevant details. As a remedy, Hafner et al. (2020) proposed a contrastive alternative based
on mutual information and the InfoNCE estimator (Poole et al., 2019). Ma et al. (2020) refined
this approach and improved results by modifying the policy learning mechanism. Using a different
motivation, namely contrastive predictive coding (Oord et al., 2018), Okada & Taniguchi (2021);
Nguyen et al. (2021); Srivastava et al. (2021); Okada & Taniguchi (2022) proposed alternative con-
trastive learning objectives for RSSMs. In this work, we leverage the variational and predictive
coding paradigms and show that CoRAL improves performance for both. Fu et al. (2021); Wang
et al. (2022) propose further factorizing the RSSM ’s latent variable to disentangle task-relevant and
task-irrelevant information. However, unlike contrastive approaches, they explicitly model the task-
irrelevant parts instead of ignoring them, which can impede performance if the distracting elements
become too complex to model. Zhu et al. (2023) propose a relaxed variational information bottle-
neck (Alemi et al., 2016) approach which trains RSSMs solely by predicting rewards and enforcing
posterior predictability using a KL term. Other recent approaches for learning RSSMs include using
prototypical representations (Deng et al., 2022) or masked reconstruction (Seo et al., 2022).

Sensor Fusion in Reinforcement Learning. Many application-driven approaches to visual RL
for robots use proprioception to solve their specific tasks (Finn et al., 2016; Levine et al., 2016;
Kalashnikov et al., 2018; Xiao et al., 2022; Fu et al., 2022). Yet, they usually do not use explicit
representation learning or concatenate image representations and proprioception. Several notable
exceptions use RSSMs with images and proprioception (Wu et al., 2022; Becker & Neumann,
2022; Hafner et al., 2022; 2023). Furthermore, Seo et al. (2023) learn world models using multiple
images from different viewpoints. However, all these approaches focus on purely reconstruction-
based representation learning. Srivastava et al. (2021) use images and proprioceptive information
using contrastive predictive coding for both modalities. Opposed to all of these works, we propose
combining contrastive approaches with reconstruction.

Multimodal Representation Learning. Representation learning from multiple modalities has
widespread applications in general machine learning, where methods such as CLIP (Radford et al.,
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2021) combine language concepts with the semantic knowledge of images and allow language-based
image generation (Ramesh et al., 2022). For robotics, Brohan et al. (2022); Mees et al. (2022); Driess
et al. (2023); Shridhar et al. (2022; 2023) combine language models with the robot’s perception for
natural language-guided manipulation tasks using imitation learning. In contrast, CoRAL assumes
an online RL setting and focuses on different modalities, namely images and proprioception.

3 Combining Contrastive Approaches and Reconstruction for State
Space Represntations

Given trajectories of observations o1:T = {ot}t=1:T and actions a1:T = {at}t=1:T we aim to learn a
state representation that is well suited for RL. We assume the observations stem from K different
sensors, ot = {o(k)

t }k=1:K , where the individual o(k)
t only contain partial information about the state.

Further, even ot may not contain all necessary information for optimal acting, i. e., the environment
is partially observable, and the representation has to accumulate information over time. Our goal
is to learn a concise, low dimensional representation ϕ(o1:t,a1:t−1) that accumulates all relevant
information until time step t. We provide this representation to a policy π(at|ϕ(o1:t,a1:t−1)) which
aims to maximize the expected return in a given RL problem. In this setting, the policy’s final return
and the sample complexity of the entire system determine what constitutes a good representation.

State Space Models (SSMs) (Murphy, 2012) naturally lend themselves to sensor fusion and infor-
mation accumulation problems. We assume a latent state variable, zt, which evolves according to a
Markovian dynamics p(zt+1|zt,at) given an action at. Furthermore, we assume the K observations
at each time step are conditionally independent given the latent state, resulting in an observation
model p(ot|zt) =

∏K
k=1 p

(k)(o(k)
t |zt). The initial state is distributed according to p(z0). Here, the

belief over the latent state, taking into account all previous actions as well as previous and current
observations p(zt|a1:t−1,o1:t) can be used as the representation. Yet, computing p(zt|a1:t−1,o1:t)
analytically is intractable for models of relevant complexity and we use a variational approximation
ϕ(o1:t,a1:t−1)=̂q(zt|a1:t−1,o1:t). This variational approximation also plays an integral part during
training and is thus readily available as input for the policy.

We instantiate the generative SSM and the variational distribution using a Recurrent State Space
Model (RSSM) (Hafner et al., 2019), which splits the latent state zt into a stochastic and a deter-
ministic part. Following Hafner et al. (2019; 2020), we assume the stochastic part of the RSSM ’s
latent state to be Gaussian. While the original RSSM only has a single observation model p(ot|zt),
we extend it to K models, one for each observation modality. The variational distribution takes the
deterministic part of the state together with the K observations ot = {o(k)

t }k=1:K and factorizes as
q(z1:t|o1:t,a1:t−1) =

∏T
t=1 q(zt|zt−1,at−1,ot). To account for multiple observations instead of one,

we first encode each observation individually using a set of K encoders, concatenate their outputs,
and provide the result to the RSSM. Finally, we also learn a reward model p(rt|zt) to predict the
reward from the representation. Following the findings of Srivastava et al. (2021) and Tomar et al.
(2023) we also include reward prediction to learn the representations for model-free agents.

3.1 Learning the State Space Representation

We propose to combine reconstruction-based and contrastive approaches to train our representations.
Training RSSMs can be based on either a variational viewpoint (Hafner et al., 2020; Ma et al., 2020)
or a contrastive predictive coding (Oord et al., 2018) viewpoint (Nguyen et al., 2021; Srivastava
et al., 2021). We investigate both approaches, as neither decisively outperforms the other.

Originally, Hafner et al. (2019) proposed leveraging a fully generative approach for RSSMs. Building
on the stochastic variational autoencoding Bayes framework (Kingma & Welling, 2013; Sohn et al.,
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2015), they derive a variational lower-bound objective

Ep(o1:T ,a1:T ) [log p(o1:T |a1:T )] ≥
T∑

t=1
Eq̂(·) [log p(ot|zt) − KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]] ,

where q̂(·) = q(zt−1:t|o1:t,a1:t)p(o1:t,a1:t), i. e.,the variational distribution and sub-trajectories from
a replay buffer. After inserting our assumption that each observation factorizes into K independent
observations and adding a term for reward prediction, this results in

T∑
t=1

Eq̂(·)

[
K∑

k=1
log p(k)(o(k)

t |zt) + log p(rt|zt) − KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]
]
. (1)

Optimizing this bound using the reparameterization trick (Kingma & Welling, 2013; Rezende et al.,
2014) and stochastic gradient descent simultaneously trains the variational distribution and all
parts of the generative model. While this approach can be highly effective, reconstructing high-
dimensional, noisy observations can also cause issues. First, it requires introducing large observation
models. These observation models are unessential for the downstream task and are usually discarded
after training. Second, the reconstruction forces the model to capture all details of the observations,
which can lead to highly suboptimal representations if images contain task-irrelevant distractions.

Contrastive Variational Learning (CV) can remedy these problems. To introduce contrastive
terms, we replace the individual reconstruction terms in Equation 1 with mutual information (MI)
terms I(o(k)

t , zt) by adding and subtracting log p(o(k)) (Hafner et al., 2020; Ma et al., 2020)

Eq̂(·)
[
log p(k)(o(k)

t |zt)
]

= Eq̂(·)

[
log p

(k)(o(k)
t |zt)

p(o(k)
t )

+ log p(o(k)
t )
]

= I(o(k)
t , zt) + c. (2)

Intuitively, the MI measures how informative a given latent state is about the corresponding ob-
servations. Thus, maximizing it leads to similar latent states for similar sequences of observations
and actions. While we cannot analytically compute the MI, we can estimate it using the InfoNCE
bound (Oord et al., 2018; Poole et al., 2019). Doing so eliminates the need for generative reconstruc-
tion. It instead only requires a discriminative approach based on a score function f (k)

v (o(k)
t , zt) 7→ R+.

This score function measures the compatibility of pairs of observations and latent states. It shares
large parts of its parameters with the RSSM. We refer to Appendix B for details on the exact param-
eterization. This methodology allows the mixing of reconstruction and mutual information terms
for the individual sensors, resulting in a generalization of Equation 1,

T∑
t=1

K∑
k=1

L(k)
v (o(k)

t , zt) + Eq̂(·) [log p(rt|zt) − KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1])] . (3)

Here L(k)
v is either Eq̂(·)

[
log p(o(k)

t |zt)
]

or I(o(k)
t , zt). As we show in Section 4 choosing the terms

corresponding to the properties of the corresponding modality can often improve performance.

Contrastive Predictive Coding (CPC) (Oord et al., 2018) provides an alternative to the vari-
ational approach. The idea is to maximize the MI between the previous latent variable zt−1 and
the observation o(k), i. e., I(o(k)

t , zt−1). While this approach seems similar to contrastive variational
learning, we use the previous latent state zt−1 instead of the current zt to estimate the MI. Thus, we
explicitly predict one time step ahead to compute the loss. As we use the RSSM’s dynamics model
for the prediction, this formalism provides a training signal to the dynamics model. However, Levine
et al. (2019); Shu et al. (2020); Nguyen et al. (2021) discuss how this signal alone is insufficient for
model-based RL. Srivastava et al. (2021) show that similar ideas also benefit model-free RL and we
follow their approach by regularizing the objective using KL-term from Equation 1 weighted with a
small factor β. Additionally, we can turn individual contrastive MI terms into reconstruction terms
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for suitable sensor modalities by reversing the principle of Equation 2. Including reward prediction,
this results in the following maximization objective

T∑
t=1

K∑
k=1

L(k)
p (o(k)

t+1, zt) + Eq̂(·) [log p(rt|zt) − βKL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]] , (4)

where L(k)
p is either the one-step ahead likelihood Eq̂(·)

[
log p(o(k)

t |zt−1)
]

or an InfoNCE estimate of

I(o(k)
t , zt−1) using a score function f

(k)
p (o(k)

t , zt−1) 7→ R+. From an implementation viewpoint, the
resulting approach differs only slightly from the variational contrastive one. For CPC approaches, we
use a sample from the RSSM’s dynamics p(zt|zt−1,at−1) and for contrastive variational approaches
we use a sample from the variational distribution q(zt|zt−1,at−1,ot) as input to the score function
or decoder.

Estimating Mutual Information with InfoNCE. We estimate the mutual information (MI)
using b mini-batches of sub-sequences of length l. After computing the latent estimates, we get
N = b · l pairs (oi, zi), i. e., we use both samples from the elements of the batch as well as all the
other time steps within the sequence as negative samples. Using those, the symmetry of MI, the
InfoNCE bound (Poole et al., 2019), and either f = f

(k)
v or f = f

(k)
p , we can estimate the MI as

I(oi, zi) ≥ 0.5
(

N∑
i=1

log f(oi, zi)∑N
j=1 f(oi, zj)

+ log f(oi, zi)∑N
j=1 f(oj , zi)

)
.

3.2 Learning to Act Based on the Representation

Our representations are amenable to both model-free and model-based reinforcement learning. For
the former, we use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) on top of the representation by
providing the deterministic part of the latent state and the mean of the stochastic part as input to
both the actor and the critic. For the latter, we use latent imagination (Hafner et al., 2020), which
propagates gradients through the learned dynamics model to optimize the actor. In both cases, we
alternatingly update the RSSM, actor, and critic for several steps before collecting a new sequence
in the environment. The RSSM uses only the representation learning loss and gets neither gradients
from the actor nor the critic.

4 Experiments

Building on the previously introduced methodology, we build two versions of Contrastive Recon-
structive Aggregated representation Learning (CoRAL) differing in the state space representation
objective. Variational CoRAL (V-CoRAL), using the variational objective (Equation 3) and Pre-
dictive CoRAL (P-CoRAL), using the predictive coding objective (Equation 4). We evaluate the
performance of CoRAL by using it for downstream online RL and assessing the average expected
return or success rate.

To show the benefits of combining contrastive and reconstruction-based objectives, we compare with
ablative variants that use the same loss for both modalities (Same-Loss), the naive approach of
concatenating proprioception to image representations (Concat) and using only the image (Img-
Only). We consider the contrastive variational (CV) and the contrastive predictive coding (CPC)
paradigm for each of these approaches. For reference, we also include reconstruction-based (Re-
con.) approaches (Equation 1). Furthermore, we use SAC (Haarnoja et al., 2018) on only the
proprioception (ProprioSAC ), to show that proprioception alone is insufficient to solve the tasks.
Finally, we consider the model-free DrQ-v2 (Yarats et al., 2022) and model-based RePo (Zhu et al.,
2023) as baselines to demonstrate the competitiveness of our approach. We extend both to also use
proprioception and refer to the resulting approaches as DrQ-v2(I+P) and RePo(I+P) respectively.

Evaluation Protocol. We run 5 seeds for each task in each suite and build our analysis on the
aggregated results across the entire suite. This process results in 35 runs for each method on Video
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Figure 2: Aggregated performance after 106 environment steps on the 7 tasks from the Video Back-
ground suite (IQM and 95% CIs). For both model-free and model-based RL, V-CoRAL performs
best among all considered methods, with the model-free performance being better than the model-
based one. While some of the model-free ablations are competitive, they perform considerably worse
in the model-based case. From the baselines, only DrQ-v2 with additional proprioception, RePo
(with and without proprioception), and DreamerPro get a final return of over 200. These results
demonstrate how including readily available proprioception with appropriate losses for each modal-
ity helps to learn accurate dynamics required by model-based RL and provides a simple alternative
to more tailored approaches.
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Figure 3: Aggregated performance after 106 environment steps on the 7 tasks from the Occlusion
suite (IQM and 95% CIs). For both, model-free and model-based RL, P-CoRAL performs best
among all considered methods, with the model-free version again outperforming its model-based
counterpart. While all approaches handle Occlusions worse than VideoBackgorund, the performance
drop is generally larger for the ablations and baselines. In particular, the Concat and model-based
Same-Loss ablations suffer and no approach using only a single modality achieves an expected return
of over 200. This indicates the importance of learning a multimodal representation using tailored
losses over naively integrating proprioception.

Background and Occlusions and 30 runs for each method in the Locomotion and Manipulation suites.
For aggregating the results over a suite, we follow Agarwal et al. (2021) and provide Interquartile
Means (IQMs), which they found to be more meaningful and robust than alternatives such as mean
or median in related scenarios. Similarly, we follow Agarwal et al. (2021) and provide 95% Stratified
Bootstrapped Confidence Intervals (CIs) for the entire suite to quantify the statistical uncertainty
in results. We indicate those with black bars in bar charts or shaded areas in reward curve plots.

Appendix A provides details for all tasks. Appendix B lists all hyperparameters of our approach
and Appendix C provides further details on the baselines. Appendix D shows learning curves for all
representation learning paradigms on all tasks, performance profiles, and per-environment results.
Code for running CoRAL and ablations on all tasks is available1.

4.1 Modified Deep Mind Control Suite Tasks

We use 7 tasks from the DeepMind Control Suite (DMC) (Tassa et al., 2018) that cover a wide
range of challenges, namely Ball-in-Cup Catch, Cartpole Swingup, Cheetah Run, Reacher Easy,
Walker Walk, Walker Run, and Quadruped Walk. We split their states into proprioceptive and non-
proprioceptive entries, where the proprioception only contains partial information about the state.

1<see supplement, GitHub link will be added here after deanonymization>
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Figure 4: Left: Saliency Maps showing on which pixels the respective representation learning
approaches focus in an example from Video Prediction. V-CoRAL focuses better on the task-relevant
cheetah, while the corresponding contrastive variational Img-Only approach is more distracted by
the video background. Right: For this Occlusion task, we train a separate decoder to reconstruct
the occlusion-free ground truth from the (detached) latent representation. For Cartpole Swingup
only the cart position is part of the proprioception. Still, P-CoRAL can capture both cart position
and pole angle, while the contrastive predictive Img-Only approach fails to do so.

The remaining information has to be inferred from images. For example, in Ball-in-Cup Catch the
cup’s state is proprioceptive while the ball’s state is not. Table 1 lists the splits for the remaining
tasks. We create two suites by adding Video Backgrounds or Occlusions for all seven tasks. For
Video Backgrounds, we follow (Nguyen et al., 2021; Deng et al., 2022) and render videos from the
Kinetics400 dataset (Kay et al., 2017) behind the agent. For Occlusions, we add slowly moving disks
in front of the agent. The upper row of Fig. 4 shows examples. For both suites, the challenge is
to learn representations that filter out irrelevant visual details while focusing on relevant aspects.
Occlusions also tests the approaches’ capabilities to maintain a consistent representation across time
under partial observability, which considerably increases the task’s difficulty.

For these tasks, we consider the model-free and model-based versions of V-CoRAL, P-CoRAL, and
all ablative variants. Note that the Concat ablations are inapplicable in the model-based setting,
as the proprioception is not available during latent imagination (Hafner et al., 2020). Besides the
DrQ-v2 and RePo based baselines, we include several other visual RL approaches tailored for images
with distractions to show the competitiveness of CoRAL. Those are the model-based Task Informed
Abstractions (TIA) (Fu et al., 2021) and DreamerPro (Deng et al., 2022), the model-free Deep
Bisimulation for Control (DBC) (Zhang et al., 2020) approach, and DenoisedMDP (Wang et al.,
2022), which has both a model-free and model-based variant.

Fig. 2 and Fig. 3 show the results for the Video Background and Occlusion tasks respectively. We
also include results for the Standard Images without any distractors or occlusions for reference and
refer to Appendix D for those results. On Natural Videos V-CoRAL yields the best results among
all approaches. However, the margin to some of the ablations is small with all of them closing in on
the performance of the best approaches on images without background videos (Fig. 9). For model-
based RL the results show clearer benefits of learning a multimodal representation by appropriately
combining multiple losses. This difference is also much more pronounced for the more difficult
Occlusions (Fig. 3) suite. Here, no image-only approach learns reasonable behavior or manages
to outperform ProprioSAC, indicating a higher difficulty for representation learning. Our method
P-CoRAL tends to perform best in this suite, achieving a return of around 750, and closing in on
the best approaches on Standard Images which get around 900. Furthermore, using readily available
proprioception for representation learning in a principled manner provides a simple alternative to
the strong baselines listed above and also tends to outperform the naive Concat ablation that does
not consider proprioception for representation learning but only for RL.

Variational vs. Predictive Approaches. Variational approaches tend to work better than pre-
dictive ones on VideoBackgrounds, where the challenge is to focus on the relevant aspects while
ignoring distractions. Yet, the predictive approaches work better on Occlusions, where information
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Figure 5: Left: Exemplary egocentric (upper row) and external example images (lower row) for
the Hurdle Cheetah Run, Hurdle Walker Run, Ants Walls, and Quadruped Escape tasks of the
Locomotion suite. Only the egocentric images are given to the agents, while the external images are
solely for visualization of the tasks. Right: Aggregated performance on model-free agents and RePo
after 106 environment steps on the 6 tasks of the Locomotion suite (IQM and 95% CIs). P-CoRAL
significantly outperforms all ablative variants and baselines, highlighting how combining contrastive
methods and reconstruction can form effective multimodal representations. It also outperforms
purely reconstruction-based approaches, even with no distraction in the images.

has to be propagated over time. As the underlying tasks are identical, this highlights the benefits
of considering both paradigms, depending on the perception challenges.

Visualization of Learned Representations. We qualitatively investigate some of the learned
representations in Fig. 4, which illustrates how CoRAL helps the representation to focus on relevant
aspects and extract all necessary information from an image.

Model Quality and Model-Based Approaches. While model-free and model-based agents
perform similarly well for approaches that reconstruct images, model-based agents perform worse
than their model-free counterparts for contrastive image losses (Fig. 2, Fig. 3, Fig. 9, Fig. 10). In line
with previous findings (Hafner et al., 2020; Ma et al., 2020), this shows how contrastive approaches
struggle to learn suitable long-term dynamics for model-based RL. However, this gap is larger for the
Same-Loss and Img-Only ablations than for CoRAL, which almost closes the gap between model-
free and model-based for V-CoRAL(Fig. 2, Fig. 3). This result demonstrates how CoRAL allows
learning more precise long-term dynamics that enable more successful model-based RL.

4.2 Locomotion Suite

Building on the DeepMind Control Suite Tassa et al. (2020), we introduce a novel Locomotion
suite consisting of six tasks: Hurdle-Cheetah Run, Hurdle-Walker Walk, Hurdle-Walker Run,
Ant-Empty, Ant-Walls and Quadruped Escape. All tasks include obstacles that have to be localized
through egocentric vision to be avoided. As the agents cannot observe themselves from the egocentric
perspective, they additionally need proprioception. The left side of Fig. 5 provides some examples
and Appendix A.2 provides further illustrations and specifications of all tasks. These tasks test the
representations’ ability to combine information from both sources to enable successful navigation
and movement. For this more challenging suite, we focus on model-free RL for all representations
due to the known performance gap for model-based RL with contrastive image losses (Hafner et al.,
2020; Ma et al., 2020), (Fig. 2, Fig. 3). We include the model-based RePo for reference.

The results on the right side of Fig. 5 show that P-CoRAL excels in the Locomotion suite and has a
significant edge over reconstruction or the pure CPC-based approach while V-CoRAL outperforms
the related variational approaches. While highly relevant to the task, the obstacles appear at
random and have random colors for some tasks, which makes reconstruction harder. The contrastive
methods’ advantage is pronounced in tasks with random colored obstacles (Fig. 21).

4.3 Manipulation Suite

For the Manipulation suite, we design 6 tasks based on ManiSkill2 (Gu et al., 2023), i.e.,
LiftCube, PushCube, TurnFaucet, OpenCabinetDrawer(RGB), OpenCanbinetDrawer(Depth), and
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Figure 6: Left: Exemplary images of the LiftCube, TurnFaucet, OpenCabinetDrawer(Depth), and
OpenCabinetDoor(RGBD) tasks. For the last one, we only show the RGB part of the image and we
provide two images per task to showcase the visual diversity and different geometries of the target
objects. Right: Aggregated performance on model-free agents and RePo after 2 × 106 environment
steps on the Manipulation suite (IQM and 95% CIs). Overall, V-CoRAL achieves the best average
success rate by a significant margin, followed by P-CoRAL. While they achieve about 68% and
58% success respectively, no ablation gets over 42%. In particular, both fully contrastive Same-Loss
ablations fail to succeed, which again highlights the importance of choosing an appropriate loss for
each modality. While both RePo and DrQ-v2 can utilize the additional proprioception, they are
not competitive with CoRAL or even SAC trained solely on the proprioception.

OpenCabinetDoor(RGBD). The first three are static manipulation tasks where the target object has
to be localized (cube) or identified (faucet) for successful manipulation. The latter three are mobile
manipulation tasks where the robot navigates to a cabinet and interacts with it using egocentric
vision and proprioception. They also use different visual modalities, i.e., standard RGB images,
depth only, or RGBD. For all tasks, we add visually realistic backgrounds using diverse scenes from
the ReplicaCAD Dataset (Straub et al., 2019) and randomize the ambient lighting. The task’s
complexity stems from the visual realism of the background and the diverse geometry of the target
objects, which require that the representations allow identification and precise localization. The left
side of Fig. 6 provides example images showing the tasks’ visual diversity and Appendix A.3 further
examples and specifications for all tasks. We again focus on model-free RL and RePo.

The right sight of Fig. 6 shows the results. The Manipulation suite is the hardest set of tasks we
consider and here the benefits of CoRAL are most obvious. Here, most of the considered base-
lines fail while only V-CoRAL and P-CoRAL achieve over 50% success rate, averaged over all
tasks, with V-CoRAL giving the best result of 68%. In particular, the corresponding contrastive
same-loss approaches fail almost completely, which puts additional emphasis on the importance of
using appropriate losses for each modality. Using different image types for the 3 mobile manipula-
tion tasks shows how CoRAL is beneficial across different visual modalities. Using depth images,
OpenCabinetDrawer(Depth) effectively removes the lighting variations for this task which allows
several approaches to achieve higher performance but has only minor effects on the ranking.

4.4 Discussion

Considering all task suites and the full results presented in Appendix D, we see the benefits of CoRAL
compared to the ablations and a large selection of model-free and model-based baselines. Especially
for the harder tasks, i.e., Occlusions (Fig. 3), Locomotion (Fig. 5), and Manipulation (Fig. 6), CoRAL
can significantly outperform other methods working on the same observations, which shows that
different modalities require distinct self-supervised loss functions while simply using the additional
proprioception by concatenation or using the same self-supervised loss is often insufficient.

Variational vs. Predictive Approaches. While either V-CoRAL or P-CoRAL generally provides
the best results on the considered tasks and both outperform the corresponding ablations, neither
consistently outperforms the other across all task suites. While this prevents conclusive decisions
about whether variational or predictive methods work generally better, we can observe a trend. The
variational approaches appear more suited for tasks requiring the filtering out of visual distractions,
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such as in Video Background and Manipulation scenarios, while predictive approaches perform better
in tasks needing information to be carried over time, like Occlusions and Locomotion.

Baselines. Contrary to the results presented in the respective original works, DBC (Zhang et al.,
2020), TIA (Fu et al., 2021), DenoisedMDP (Wang et al., 2022) and RePo (Zhu et al., 2023) un-
derperform on the Video Backgrounds task. The discrepancy in performance is due to us using a
more difficult experimental setup proposed by Deng et al. (2022), which features colored videos of
greater diversity. We detail the differences and their effects in Appendix C. Furthermore, RePo
fails in the Manipulation suite which seems to contradict results presented by Zhu et al. (2023) on
three static manipulation tasks, similar to those in that suite. Again there are subtle differences in
the task specification: While Zhu et al. (2023) only randomize the visual background we randomize
both the visual background and the task’s initial condition (cube position or faucet model) creating
considerably more challenging scenarios.

Consistency Across Tasks. The additional result visualizations in Appendix D show that the
aggregated performance underlying our analysis is mostly representative of the per-task performance,
i.e., if an approach outperforms another when considering the aggregated performance, it generally
also does so on a large majority of the individual tasks and runs. Furthermore, performance is
consistent across the different observation types for the DMC tasks, i.e., Occlusions are more difficult
than Video Background, which are more difficult than Standard Images (Fig. 9, Fig. 10).

5 Conclusion

We consider the problem of Reinforcement Learning (RL) from multiple sensors, in particular im-
ages and proprioception. We propose Contrastive reconstructive Aggregated Representation Learning
(CoRAL), an approach to learning multimodal state space representations for RL by combining con-
trastive and reconstruction losses. CoRAL builds on the insight that we can replace likelihood-based
reconstruction terms with contrastive mutual information terms and vice-versa and is applicable for
variational and predictive coding paradigms. We evaluate on modified versions of the DeepMind
Control Suite and novel Locomotion and Manipulation suites. Our results show a consistent ben-
efit of CoRAL due to the combination of contrastive approaches for images with reconstruction
for low-dimensional, concise signals. These benefits are most pronounced for the hardest tasks we
consider, i.e., the Manipulation suite, where CoRAL, allows us to solve complex tasks with realistic
background scenes and varying target object geometries.

Limitations. Depending on the task, either V-CoRAL or P-CoRAL performs better. While our
evaluation provides some insights about when to use either, further research into understanding their
advantages and disadvantages and finding a unified approach that excels in all tasks is required. Ad-
ditionally, even with CoRAL, model-free agents outperform their model-based counterparts when
using contrastive image losses. We thus believe that contrastive learning of state space representa-
tions can be further improved, especially with regard to learning accurate system dynamics.
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Table 1: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
DeepMind Control Suite environments.

Environment Proprioceptive Non-Proprioceptive
Ball In Cup cup position and velocity ball position and velocity
Cartpole cart position and velocity pole angle and velocity
Cheetah joint positions and velocities global pose and velocity
Reacher reacher position and velocity distance to target
Quadruped joint positions and velocities global pose + velocity, forces
Walker orientations and velocities of links global pose and velocity, height above ground

Table 2: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
Locomotion Suite. Some of the agents (Cheetah, Walker, Quadruped) require more proprioceptive
information for the locomotion tasks with an egocentric vision than for the standard tasks with
images from an external perspective.

Environment Proprioceptive Non-Proprioceptive
Ant joint position and velocity wall positions

global velocities global position
Hurdle Cheetah joint positions and velocities hurdle positions and heights

global velocity global position
Hurdle Walker orientations and velocities of links hurdle positions and height

global position and velocity
Quadruped (Escape) joint positions and velocities, Information about terrain

torso orientation and velocity,
imu, forces, and torques at joints

A Environments

A.1 DeepMind Control Suite Tasks

Table 1 states how we split the states of the original DeepMind Control Suite (DMC) (Tassa
et al., 2018) tasks into proprioceptive and non-proprioceptive parts. For the model-based agents, we
followed common practice (Hafner et al., 2020; Fu et al., 2021; Wang et al., 2022; Deng et al., 2022)
and use an action repeat of 2 for all environments. We do the same for the model-free agents except
for: Ball In Cup Catch (4), Cartpole Swingup (8), Cheetah Run (4) and Reacher Easy (4). All
environments in the locomotion suite also use an action repeat of 2, this includes Hurdle Cheetah
Run which requires more fine-grained control than the normal version to avoid the hurdles.

Natural Background. Following (Zhang et al., 2020; Fu et al., 2021; Nguyen et al., 2021; Deng
et al., 2022; Wang et al., 2022; Zhu et al., 2023) we render videos from the driving car class of
the Kinetics400 dataset (Kay et al., 2017) behind the agents to add a natural video background.
However, previous works implement this idea in two distinct ways. Nguyen et al. (2021) and Deng
et al. (2022) use color images as background and pick a random sub-sequence of a random video
for each environment rollout. They adhere to the train-validation split of the Kinetcs400 dataset,
using training videos for representation and policy learning and validation videos during evaluation.
Zhang et al. (2020); Fu et al. (2021); Wang et al. (2022); Zhu et al. (2023), according to the official
implementations, instead work with gray-scale images and sample a single background video for the
train set once during initialization of the environment. They do not sample a new video during the
environment reset, thus all training sequences have the same background video.

We follow the first approach, as we believe it mimics a more realistic scenario of always changing
and colored natural background.
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Figure 7: The environments in the Locomotion Suite are (from left to right) Hurdle Cheetah
Run, Hurdle Walker Walk / Run, Ant Empty, Ant Walls, and Quadruped Escape. Upper Row:
Egocentric vision provided to the agent. Lower Row: External image for visualization.

Occlusions. Following (Becker & Neumann, 2022), we render slow-moving disks over the original
observations to occlude parts of the observation. The speed of the disks makes memory necessary,
as they can occlude relevant aspects for multiple consecutive timesteps.

A.2 Locomotion Suite

The 6 tasks in the locomotion suite are Ant Empty, Ant Walls, Hurdle Cheetah Run, Hurdle
Walker Walk, Hurdle Walker Run, and Quadruped Escape. Table 2 shows the splits into pro-
prioceptive and non-proprioceptive parts. Fig. 7 displays all environments in the suite.

Both Ant tasks build on the locomotion functionality introduced into the DeepMind Control suite
by (Tassa et al., 2020). For Ant Empty, we only use an empty corridor, which makes this the easiest
task in our locomotion suite. For Ant Walls, we randomly generate walls inside the corridor, and
the agent has to avoid those to achieve its goal, i.e., running through the corridor as fast as possible.

For the Hurdle Cheetah and Hurdle Walker tasks we modified the standard Cheetah Run,
Walker Walk, and Walker Run tasks by introducing "hurdles" over which the agent has to step to
move forward. The hurdles’ positions, heights, and colors are reset randomly for each episode, and
the agent has to perceive them using egocentric vision. For this vision, we added a camera in the
head of the Cheetah and Walker. Note that the hurdle color is not relevant to avoid them and thus
introduces irrelevant information that needs to be captured by reconstruction-based approaches.

The Quadruped Escape task is readily available in the DeepMind Control Suite. For the egocentric
vision, we removed the range-finding sensors from the original observation and added an egocentric
camera.

A.3 Manipulation Suite

The Manipulation Suite builds on Maniskill2 (Gu et al., 2023) and comprises 6 tasks, i.e.,
LiftCube, PushCube, TurnFaucet, OpenCabinetDrawer(RGB), OpenCabinetDrawer(Depth) and
OpenCabinetDoor(RGBD). The first three involve table-top manipulation and are harder variations
of some tasks considered by Zhu et al. (2023). The latter three are mobile manipulation tasks using
different image modalities. For all tasks, we use scenes from the Replica Dataset Straub et al. (2019)
(specifically: ReplicaCAD_baked_lighting2) to place the robot in a visually realistic scene. At the
beginning of each episode, we randomly pick one of 80 curated scenes and randomly sample the
ambient lighting to place the task in a varying and visually realistic scenery.

2https://huggingface.co/datasets/ai-habitat/ReplicaCAD_baked_lighting/
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Figure 8: 4 Example images for each of the environments in the Manipulation Suite, showing the vi-
sual and geometric diversity within each task. The tasks are, from left to right, LiftCube, PushCube,
TurnFaucet, OpenCabinetDrawer(RGB), OpenCabinetDrawer(Depth), OpenCabinetDoor(RGBD).
For the last, we visualize only the RGB part of the image.

We use delta joint position control, no action repeat, and dense normalized rewards for all tasks. For
the depth images we use the depth camera functionality provided by ManiSkill2 and clip to values
between 0 and 4 meters. Figure Fig. 8 shows example images for all environments.

LiftCube builds on Maniskill2’s LiftCube task and involves picking up a cube and lifting it to a
fixed target position. The proprioception includes the robot’s joint positions, velocities, and end-
effector pose, while the cube has to be localized and tracked via an image of an external camera.
Opposed to Zhu et al. (2023) we randomize the initial cube position, requiring the agents to first
localize the cube based on the representation, which makes the task considerably more difficult.

PushCube builds on the PushCube task introduced by Zhu et al. (2023), but we again randomize
the initial cube position. Like in LiftCube, the proprioception includes the robot’s joint positions,
velocities, and end-effector pose, while the cube has to be localized and tracked via an image of an
external camera.

TurnFaucet extends Maniskill2’s TurnFaucet task and involves opening various faucets by turning
the handle. The proprioception includes the robot’s joint positions, velocities, and end-effector pose,
while all information regarding the faucet has to be inferred from an image of an external camera.
We sample one out of 15 different faucets at the beginning of each episode. As their geometry
and opening mechanism vary any representation needs to capture detailed information about the
faucet and allow the policy to identify it. This makes our task considerably more difficult than that
proposed by Zhu et al. (2023), who use the same faucet model for all episodes.

OpenCabinetDrawer(RGB) is based on the mobile manipulation OpenCabinetDrawer task from
ManiSkill2, where a mobile robot with a single arm has to navigate towards and then open a drawer
one of 25 cabinets. We disable the rotation of the robot base, which prevents the robot from turning
away from the cabinet during initial exploration and significantly speeds up learning for all considered
approaches. This results in a 10 dimensional action space, consisting of the x and y velocities of the
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base, desired changes for the 7 robot joints, and the gripper. Images are egocentric from the top of
the robot base and the proprioception includes the entries from the ManiSkill2 "state dict".

OpenCabinetDrawer(Depth) is equivalent to OpenCabientDrawer(RGB) but the agent only
receives an egocentric depth image instead of a color image. This effectively removes the variation
in lighting from the environment.

For OpenCabinetDoor(RGBD) we build on the Maniskill2 task of the same name, use 25 dif-
ferent cabinet models, and the same action space as for OpenCabientDrawer(RGB). The sensory
observations are also equivalent to the Drawer tasks, but we provide both color and depth informa-
tion. While conceptually similar to the Drawer tasks opening the Door is considerably harder, as it
requires coordination with the base not just to reach the handle, but also to pull back on it.

B Architecture Details and Training

We use the same hyperparameters for all experiments based on the DeepMind Control Suite (DMC),
i.e., the standard tasks with the different observation types (Video Background, Occlusions and also
Standard Images) as well as, the Locomotion Suite. For the ManiSkill2-based Manipulation Suite,
we use a larger model and a more conservative update scheme for actors and critics. We use the
ELU activation function unless otherwise mentioned.

B.1 Recurrent State Space Model

We denote the deterministic part of the RSSM ’s state by ht and the stochastic part by st. The
base-RSSM model without parts specific to the objective consists of:

• Encoders: ψ
(k)
obs(ot), where ψobs is the convolutional architecture proposed by (Ha &

Schmidhuber, 2018) and used by (Hafner et al., 2019; 2020) for image observations. For
the low-dimensional proprioception, we used 3 × 400 fully connected layers for the DMC
tasks and 4 × 512 fully connected layers Manipulation Suite.

• Deterministic Path: ht = g(zt−1,at−1,ht−1) = GRU(ψdet(zt−1,at−1),ht−1) (Cho et al.,
2014), where ψdet is a 2×400 fully connected NN and the GRU has a memory size of 200 for
the DMC tasks. For the Manipulation Suite ψdet has 2 × 512 units and the GRU a memory
size of 400

• Dynamics Model: p(zt+1|zt,at) = ψdyn(ht), where ψdyn is a 2×400 units fully connected
NN for the DMC tasks and a 2 × 512 units fully connected NN for the Manipulation Suite.
The network learns the mean and standard deviation of the distribution.

• Variational Distribution q(zt|zt−1,at−1,ot) = ψvar

(
ht,Concat

(
{ψ(k)

obs(o
(k)
t )}k=1:K

))
,

where ψvar is a 2 × 400 units fully connected NN for the DMC tasks and a 2 × 512 units
fully connected NN for the Manipulation Suite. Again, the network learns the mean and
standard deviation of the distribution.

• Reward Predictor p(rt|zt): 2×128 units fully connected NN for model-free agents. 3×300
units fully connected NN with ELU activation for model-based agents. The network only
learns the mean of the distribution. The standard deviation is fixed at 1. The model-based
agents use a larger reward predictor as they rely on it for learning the policy and the value
function. Model-free agents use the reward predictor only for representation learning and
work with the ground truth rewards from the replay buffer to learn the critic.

B.2 Objectives

Image Inputs and Augmentation. Whenever we use a contrastive image loss, we randomly crop
a 64 × 64 pixel image from the original image of size 76 × 76 pixels during training. Cropping is
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temporally consistent, i.e., the same crop is used for all time steps in a sub-sequence. For evaluation,
we corp at the center. For the ablations that reconstruct images, we downsize them directly to 64×64
pixels.

KL. For the KL terms in Equation 1 and Equation 3 we follow Hafner et al. (2023) and combine
the KL-Balancing technique introduced in Hafner et al. (2021) with the free-nats regularization used
in Hafner et al. (2019; 2020). Following Hafner et al. (2021) we use a balancing factor of 0.8. We
give the algorithm 1 free nat for the DMC Tasks and 3 for the Manipulation Suite.

Contrastive Variational Objective. The score function for the contrastive variational objective
is given as

f (k)
v (o(k)

t , zt) = exp
(

1
λ
ρo

(
ψ

(k)
obs(o

(k)
t )
)T

ρz(zt)
)
,

where ψ(k)
obs is the RSSM ’s encoder and λ is a learnable inverse temperature parameter. ρo and ρz

are projections that project the embedded observation and latent state to the same dimension, i.e.,
50. ρo is only a single linear layer while ρz is a 2 × 256 fully connected NN. Both use LayerNorm
(Ba et al., 2016) at the output.

Contrastive Predictive Objective. The score function of the contrastive predictive objective
looks similar to the one of the contrastive variational objective. The only difference is that the
latent state is forwarded in time using the RSSMs transition model to account for the predictive
nature of the objective,

f (k)
p (o(k)

t , zt−1) = exp
(

1
λ
ρo

(
ψ

(k)
obs(o

(k)
t )
)T

ρz(ϕdyn(g(zt−1, ·))
)
.

We use the same projections as in the contrastive variational case.

Following Srivastava et al. (2021) we scale the KL term using a factor of β = 0.001.

Reconstruction Objectives. Whenever we reconstruct images we use the up-convolutional ar-
chitecture proposed by (Ha & Schmidhuber, 2018) and used by (Hafner et al., 2019; 2020). For
low-dimensional observations, we use 3 × 400 units fully connected NN for the DMC tasks and a
4 × 512 Units fully connected NN for the Manipulation Suite. In all cases, only the mean is learned.
We use a fixed variance of 1 for all image losses and the proprioception for the DMC tasks. For the
Manipulation Suite, we set the variance for the proprioception to 0.04.

Optimizer. We used Adam Kingma & Ba (2015) with α = 3 × 10−4, β1 = 0.99, β2 = 0.9 and
ε = 10−8 for all losses. We clip gradients if the norm exceeds 10.

B.3 Soft Actor Critic

Table 3 lists the hyperparameters used for model-free RL with SAC Haarnoja et al. (2018).

We collected 5, 000 initial steps at random. During training, we update the RSSM, critic, and
actor in an alternating fashion for d steps before collecting a new sequence by directly sampling
from the maximum entropy policy. Here, d is set to be half of the environment steps collected per
sequence (after accounting for potential action repeats). Each step uses 32 subsequences of length
32, uniformly sampled from all prior experience.

B.4 Latent Imagination

Table 4 lists the hyperparameters used for model-based RL with latent imagination. They follow to
a large extent those used in Hafner et al. (2020; 2021).

We again collect 5, 000 initial steps at random. During training, we update the RSSM, value function,
and actor in an alternating fashion for 100 steps before collecting new sequences. Each step uses 50
subsequences of length 50, uniformly sampled from all prior experience. For collecting new data, we
use constant Gaussian exploration noise with σ = 0.3.
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Table 3: Hyperparameters used for policy learning with the Soft Actor-Critic.

Hyperparameter DMC and Locomotion Manipulation
Actor Hidden Layers 3 × 1, 024 Units 3 × 1, 024 Units
Actor Activation ELU ELU + LayerNorm
Critic Hidden Layers 3 × 1, 024 Units 3 × 1, 024 Units
Critic Activation Tanh ELU + LayerNorm
Discount 0.99 0.85
Actor Learning Rate 0.001 0.0003
Actor Gradient Clip Norm 10 10
Critic Learning Rate 0.001 0.0003
Critic Gradient Clip Norm 100 100
Target Critic Decay 0.995 0.995
Target Critic Update Interval 1 1
α learning rate 0.001 0.0003
initial α 0.1 1.0
target entropy - action dim - action dim

Table 4: Hyperparameters used for policy learning with Latent Imagination.

Hyperparameter Value
Actor Hidden Layers 3 × 300 Units
Actor Activation ELU
Critic Hidden Layers 3 × 300 Units
Critic Activation ELU
Discount 0.99
Actor Learning Rate 8 × 10−5

Actor Gradient Clip Norm 100
Value Function Learning Rate 8 × 10−5

Value Gradient Clip Norm 100
Slow Value Decay 0.98
Slow Value Update Interval 1
Slow Value Regularizer 1
Imagination Horizon 15
Return lambda 0.95

C Details on Baselines and Ablations.

For Dreamer-v3 (Hafner et al., 2023) we use the raw reward curve data provided with the official
implementation3. For DreamerPro (Deng et al., 2022)4, Task Informed Abstractions (Fu et al.,
2021)5, Deep Bisumlation for Control (Zhang et al., 2020)6, DenoisedMDP (Wang et al., 2022)7

and DrQ-v2 (Yarats et al., 2022)8 we use the official implementations provided by the respective
authors.

3https://github.com/danijar/dreamerv3/blob/main/scores/data/dmcvision_dreamerv3.json.gz
4https://github.com/fdeng18/dreamer-pro
5https://github.com/kyonofx/tia/
6https://github.com/facebookresearch/deep_bisim4control/
7https://github.com/facebookresearch/denoised_mdp
8https://github.com/facebookresearch/drqv2
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DrQ-(I+P) builds on the official implementation and uses a separate encoder for the proprioception
whose output is concatenated to the image encoder’s output and trained using the critics’ gradients.

We implemented RePo and RePo(I+P) in our framework, reused the Hyperparameters form Zhu
et al. (2023), and ensured the results of our implementation match the official implementation’s9

result on the DMC tasks with standard images. RePo(I+P) encodes the proprioception using a
separate encoder and both the embedded image and proprioception are given to the RSSM.

Ablations that are Similar to related Approaches. Some of our ablations are very similar to
related approaches. The model-based Img-Only ablation with reconstruction loss, is very similar to
Dreamer-v1 (Hafner et al., 2020). It differs from the Dreamer-v1 (Hafner et al., 2020) in using the
KL-balancing introduced in (Hafner et al., 2021) and in regularizing the value function towards its
own exponential moving average, as introduced in (Hafner et al., 2023).

However, there are considerable differences between the contrastive version of Dreamer-v1(Hafner
et al., 2020) and the contrastive variational Img-Only ablation. In particular, those regard the exact
form of mutual information estimation and the use of image augmentations.

The model-free contrastive predictive Img-Only and Same-Loss ablations are similar to the approach
of Srivastava et al. (2021). The main difference is that Srivastava et al. (2021) includes the critic’s
gradients when updating the representation while in our setting no gradients flow from the actor
or the critic to the representation. Furthermore, we did not include the inverse dynamics objective
used by Srivastava et al. (2021) as we did not find it to be helpful. Additionally, we adapted some
hyperparameters to match those of our other approaches.

C.1 Hyperparameters of Abltions and Baselines.

Ablations. All Same-Loss, Concat, and Img-Only use the hyperparameters listed in Appendix B.
They are merely missing certain parts of the model or use a different loss for one or both modalities.
For the Concat baseline, we project the proprioception to the RSSMs latent state size (stochastic +
deterministic) using a single linear layer before concatenation.

ProprioSAC uses the hyperparameters listed in Table 3, except for the learning rates. We reduced
those to the SAC default values of 0.0003 for all environments, as we found the more aggressive
updates used for CoRAL on Video Background, Occlusions and Locomotion can lead to instabilities
when training directly on the proprioception.

Baselines. All our baselines were originally evaluated on standard DeepMind Control Suite tasks,
modified DeepMind Control Suite tasks, or both. They were designed for problems very similar to
Occlusions and, in particular, Video Background and we thus reuse the Hyperparameters originally
proposed by the respective authors. For baselines using an RSSM, (TIA, DreamerPro, Denoised-
MDP, and RePo) these are generally very similar and follow Hafner et al. (2020; 2021).

For the Locomotion suite all approaches, including CoRAL and the ablations, use the same Hyper-
parameters as they use for Video Backgrounds and Occlusions.

For the Manipiluation suite we increased the model sizes of RePo following those of CoRAL. For
both the DrQ-v2 -based and the RePo-based baselines we tried a discount factor of 0.85 and 0.99 to
ensure the performance differences to CoRAL is not an artifact of the low discount of 0.85. However,
the lower discount worked better for all methods.

C.2 On the Performance of Some Baselines in our Setting.

As described in Section A.1, there are distinct ways how to select and use the Kinetics400 videos in
the existing literature. Nguyen et al. (2021), who first introduced the more challenging setting we
use, already found DBC (Zhang et al., 2020) to struggle in this setting and our results align with
those findings.

9https://github.com/zchuning/repo
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TIA (Fu et al., 2021) and DenoisedMDP (Wang et al., 2022) factorize the latent variable into 2
distinct parts and formulate loss functions that force one part to focus on task-relevant aspects and
the other on task-irrelevant aspects. However, the part responsible for the task-irrelevant aspects
still has to model those explicitly. In the more complicated setting with randomly sampled, colored
background videos, the TIA and DenoisedMDP world models underfit and thus fail to learn a good
representation or policy. Contrastive approaches, such as our approach and DreamerPro (Deng
et al., 2022), do not struggle with this issue, as they do not have to model task-irrelevant aspects
but can learn to ignore them.

RePo (Zhu et al., 2023) was also evaluated on the simpler setting and Zhu et al. (2023) report an im-
proved performance over TIA and DenoisedMDP. In the more challenging setting, this improvement
persists and RePo performs similarly to DreamerPro (Fig. 2).

Furthermore, Zhu et al. (2023) presents results on ManiSkill2 environments similar to LiftCube,
PushCube, and TurnFaucet of our Manipulation Suite. However, as detailed in Appendix A.3 our
Manipulation Suite tasks randomize initial conditions (i.e., cube position or faucet model) which
results in significantly more challenging tasks, in which RePo seems to struggle.

D Complete Results

The following pages list the aggregated results and performance profiles for all tasks, representation-
learning approaches, and both model-free and model-based RL. We compute inter-quartile means
and stratified bootstrapped confidence intervals, as well as the performance profiles according to the
recommendations of Agarwal et al. (2021) using the provided library10. For each task in the suites,
we ran 5 seeds per method, i.e., the results for Standard Images, Video Backgrounds, and Occlusions
are aggregated over 35 runs, and those for Locomotion over 30 runs. For OpenCabinetDrawer we run
20 seeds per method. Fig. 9 lists the aggregated results for all model-free agents on the DeepMind
Control (DMC) Suite tasks and Fig. 11 lists the corresponding performance profiles. Fig. 10 lists
the aggregated results for all model-based agents on the DeepMind Control Suite tasks and Fig. 12
lists the corresponding performance profiles. Fig. 13 shows aggregated results and performance
profiles for the Locomotion suite. Fig. 14 shows aggregated results and performance profiles for the
Manipulation suite. We also list the per-task results for all task suits:

• Fig. 15: Model-free agents on DMC tasks with Standard Images

• Fig. 16: Model-free agents on DMC tasks with Video Background.

• Fig. 17: Model-free agents on DMC tasks with Occlusions.

• Fig. 18: Model-based agents on DMC tasks with Standard Images.

• Fig. 19: Model-based agents on DMC tasks with Video Background.

• Fig. 20: Model-based agents on DMC tasks with Occlusions.

• Fig. 21: Per Environment Results for the Locomotion suite.

• Fig. 22: Per Environment Results for the Manipulation suite.

10https://github.com/google-research/rliable
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Contrastive Variational Representations
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Figure 9: Aggregated results for all model-free agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. As expected, reconstruction-based
approaches do not work on Video Background and Occlusions. Out of all considered approaches V-
CoRAL achieves the highest performance on Video Background and P-CoRAL achieves the highest
performance on Occlusions.
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Contrastive Variational Representations
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Figure 10: Aggregated results for all model-based agents on the DeepMind Control Suite envi-
ronments with Standard Images, Video Background, and Occlusions. Compared to their model-free
counterparts (Fig. 9), model-based agents perform worse, except if a reconstruction-based represen-
tation is used. Yet, the performance gap is larger for image-only and fully contrastive approaches.
Especially V-CoRAL still achieves high performance on Video Background, almost matching the per-
formance of Dreamer-v3 on Standard Images. This further highlights the benefits of using CoRAL,
which can significantly improve over tailored approaches such as DreamerPro or RePo.
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Contrastive Variational Representations
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Figure 11: Performance profiles for all model-free agents on the DeepMind Control Suite tasks
with Standard Images, Video Background, and Occlusions. They show that performance is largely
consistent across the tasjs. The sole exception is V-CoRAL and the contrastive variational approach
with the same loss for both modalities on Occlusions. Here, the former fails for Ball-in-Cup Catch
and Cartpole Swingup, while the latter underperforms for Cheetah Run (Fig. 17).
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Figure 12: Performance profiles for all model-based agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. They indicate that performance
is largely consistent across the environments.
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Figure 13: Aggregated results and performance profiles for the Locomotion suite. Both V-CoRAL
and P-CoRAL outperform reconstruction and P-CoRAL gives the best results of all approaches by a
significant margin Fig. 21 shows that the performance difference is larger in environments with ran-
domly colored obstacles (Hurdle Cheetah Run, Hurdle Walker Walk, Hurdle Walker Run. The
color is not relevant to avoid the obstacles but seems to hinder reconstruction.
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Figure 14: Aggregated results and performance profiles for the Manipulation Suite. V-CoRAL
performs best by a significant margin, followed by P-CoRAL No approach that uses solely images,
i.e., Img Only-ablations, RePo and DrQ-v2, or uses both modalities but has a fully constrastive
objective achieves any notable success.
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Figure 15: Per environment results for model-free agents on the DeepMind Control Suite with
Standard Images.
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Figure 16: Per environment results for model-free agents on the DeepMind Control Suite with Video
Background.
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Figure 17: Per environment results for model-free agents on the DeepMind Control Suite with
Occlusions.
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Figure 18: Per environment results for model-based agents on the DeepMind Control Suite with
Standard Images.
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Figure 19: Per environment results for model-based agents on the DeepMind Control Suite with
Video Background.
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Figure 20: Per environment results for model-based agents on the DeepMind Control Suite with
Occlusions.
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Figure 21: Per environment results for the Locomotion suite.
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Figure 22: Per environment results for the Manipulation suite.
Reconstruction-Based Representation
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